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Motivation

Complexity of high-end HPC systems keeps growing
Extreme degree of parallelism
Heterogeneous core architectures
Deep memory hierarchy
Power constrains

⇒ Need for scalable, reliable performance and capability to rapidly adapt to new HW
Applications have also become complex

In-situ analysis, workflows
Sophisticated monitoring and tools support, etc. . .
Isolated, consistent simulation performance

⇒ Dependence on POSIX, MPI and OpenMP

Seemingly contradictory requirements. . .
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Operating System = Overhead

Every administration layer has its overhead ⇒ e. g. Hourglass benchmark
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How does the HPC / Cloud Community reduce overhead?
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How does the HPC community reduce the overhead?

Light-weight Kernels

Typically taken of an existing fat kernel (e. g. Linux)
Removalof unneeded features to improve the scalability
e. g. ZeptoOS

Multi-Kernels
A specialized kernel runs side-by-side to full-weight kernel (e. g. Linux)
Applications of the full-weight kernels are able to run on the specialized kernel.
The specialized kernel catch every system call and delegate them to the full-weight
kernel

Binary compatible to the full-weight kernel
Examples: mOS, McKernel
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OS Designs for Cloud Computing – Usage of Common OS

Operating System eth0

Hypervisor Software Virtual Switch

eth0OS

Application

eth0OS

Application

Two operating systems to maintain a single computer?
Double Management!
Why does a Cloud base on a Multi-User-/Multi-Tasking OS?
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OS Designs for Cloud Computing – LibraryOS

Operating System eth0

Hypervisor Software Virtual Switch

eth0libOS

Application

eth0libOS

Application

Now, every system call is a function call ⇒ Low overhead
Whole optimization of an image possible (including the library OS)

Link Time Optimization (LTO)
Removing unneeded code ⇒ reduces the attack vector
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Related Unikernels

Rump kernels1

Part of NetBSD ⇒ e. g., NetBSD’s TCP / IP stack is available as library
Strong dependencies to the hypervisor
Not directly bootable on a standard hypervisor (e. g., KVM)

IncludeOS2

Runs natively on the hardware ⇒ minimal Overhead
Only 32 bit support to avoid the overhead of paging ⇒ uncommon in HPC

MirageOS3

Designed for the high-level language OCaml ⇒ uncommon in HPC

1A. Kantee and J. Cormack. “Rump Kernels – No OS? No Problem!”. In: ; login: 2014.
2A. Bratterud et al. “IncludeOS: A Resource Efficient Unikernel for Cloud Services”. In:

7th Int. Conference on Cloud Computing Technology and Science. 2015.
3A. Madhavapeddy et al. “Unikernels: Library Operating Systems for the Cloud”. In:

8th Int. Conference on Architectural Support for Programming Languages and Operating Systems. 2013.
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HermitCore Design

Combination of the Unikernel and Multi-Kernel to reduce the overhead
The same binary is able to run

in a VM (classical unikernel setup)
or bare-metal side-by-side to Linux (multi-kernel setup)

Support for dominant programming models (MPI, OpenMP)
Single-address space operating system

No TLB Shootdown
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HermitCore Design

Classical Unikernel Setup
Applications are able to boot directly within a VM

Tested with Qemu / KVM
Tested with uhyve (experimental KVM-based Hypervisor)

Qemu emulates more than HermitCore needs ⇒ large setup time
uhyve reduce the boot time (from 2 s to ~30 ms)

Amazon Web Services (available soon!)

Multi-Kernel Setup
One kernel per NUMA node

Only local memory accesses (UMA)
Message passing between NUMA nodes

One FWK (Linux) in the system to get access to a broader driver support
Only a backup for pre- / post-processing
Critical path should be handled by HermitCore
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Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

On the detection of a
HermitCore app, a proxy will be
started.

The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.
By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.
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Runtime Support

SSE, AVX2, AVX512, FMA,. . .
Full C-library support (newlib)
HBM support similar to memkind
IP interface & BSD sockets (LwIP)

IP packets are forwarded to Linux
Shared memory interface

Pthreads
Thread binding at start time
No load balancing ⇒ less housekeeping

OpenMP via Intel’s Runtime
iRCCE- & MPI (via SCC-MPICH)
Full support for the Go runtime
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Operating System Micro-Benchmarks

Test systems
Intel Haswell CPUs (E5-2650 v3) clocked at 2.3 GHz
Intel KNL (Phi 7210) clocked at 1.3 GHz, SNC mode with four NUMA nodes

Results in CPU cycles

System activity KNL Haswell

HermitCore Linux HermitCore Linux

getpid() 15 486 14 143
sched_yield() 197 983 97 370
malloc() 3 051 12 806 3715 6575
first write access to a page 2 078 3 967 2018 4007
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Overhead of VMs – Determined via NAS Parallel Benchmarks (Class B)

Native (Linux) HermitCore + uhyve
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Conclusions

It works! ⇒ https://youtu.be/gDYCJ1DOTKw

Binary packages are available
Reduce the OS noise significantly
Try it out!

http://www.hermitcore.org

Thank you for your kind attention!
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Outlook

A fast direct access to the interconnect is required
SR-IOV simplifies the coordination between Linux & HermitCore
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OS Designs for Cloud Computing – Container

OS
eth0

Container

Application

Container

Application

Building of virtual borders (namespaces)
Containers and their processes doesn’t see each other
Fast access to OS services
Less secure because an exploit for the container attacks also the host OS
Doesn’t reduce the OS noise of the host system
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EPCC OpenMP Micro-Benchmarks
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Throughput Results of the Inter-kernel Communication Layer
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Lack of programmability

Non-Uniform Memory Access

Costs for memory access may vary
Run processes where memory is
allocated
Allocate memory where the process
resides
Implications for the performance

Where should the applications
store the data?
Who should decide the location?

The operating system?
The application developers?

Socket 0 Socket 1

Memory 0 Memory 1

Interconnect

Memory 2 Memory 3
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Tuning Tricks

Parallelization via Shared Memory
(OpenMP)

Many side-effects and error-prone
Incremental parallelization

Parallelization via Message Passing
(MPI)

Restructuring of the sequential code
Less side-effects

Performance Tuning
Bind MPI applications on one NUMA
node

⇒ No remote memory access
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OpenMP Runtime

GCC includes a OpenMP Runtime (libgomp)
Reuse synchronization primitives of the Pthread library
Other OpenMP runtimes scales better
In addition, our Pthread library was originally not designed for HPC

Integration of Intel’s OpenMP Runtime
Include its own synchronization primitives
Binary compatible to GCC’s OpenMP Runtime
Changes for the HermitCore support are small

Mostly deactivation of function to define the thread affinity
Transparent usage

For the end-user, no changes in the build process

24 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
5th April 2017



Support of compilers beside GCC

Just avoid the standard environment (−ffreestanding)
Set include path to HermitCore’s toolchain
Be sure that the ELF file use HermitCore’s ABI

Patching object files via elfedit
Use the GCC to link the binary
LD = x86_64 -hermit -gcc
#CC = x86_64 -hermit -gcc
# CFLAGS = -O3 -mtune= native -march= native -fopenmp -mno -red -zone
CC = icc -D__hermit__
CFLAGS = -O3 -xHost -mno -red -zone -ffreestanding -I$( HERMIT_DIR ) -openmp
ELFEDIT = x86_64 -hermit - elfedit

stream .o: stream .c
$(CC) $( CFLAGS ) -c -o $@ $<
$( ELFEDIT ) --output -osabi HermitCore $@

stream : stream .o
$(LD) -o $@ $< $( LDFLAGS ) $( CFLAGS )
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Is the software stack difficult to maintain?

Changes to the common software stack determined with cloc

Software Stack LoC Changes

binutils 5 121 217 226
gcc 6 850 382 4 821
Linux 15 276 013 1 296
Newlib 1 040 826 5 472
LwIP 38 883 832
Pthread 13 768 466
OpenMP RT 61 594 324
HermitCore – 10 597
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Hydro (preliminary results)
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Thank you for your kind attention!

Stefan Lankes et al. – slankes@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems
E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

www.acs.eonerc.rwth-aachen.de
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