

HermitCore – A Low Noise Unikernel for Extrem-Scale Systems

Stefan Lankes¹, Simon Pickartz¹, Jens Breitbart²

¹RWTH Aachen University, Aachen, Germany ²Bosch Chassis Systems Control, Stuttgart, Germany

Motivation

- Challenges for the Future Systems
- OS Architectures
- HermitCore Design
- Performance Evaluation
- Conclusion and Outlook

2 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5th April 2017

Motivation

Complexity of high-end HPC systems keeps growing

- Extreme degree of parallelism
- Heterogeneous core architectures
- Deep memory hierarchy
- Power constrains
 - \Rightarrow Need for scalable, reliable performance and capability to rapidly adapt to new HW
- Applications have also become complex
 - In-situ analysis, workflows
 - Sophisticated monitoring and tools support, etc...
 - Isolated, consistent simulation performance
 - \Rightarrow Dependence on POSIX, MPI and OpenMP

Seemingly contradictory requirements...

 3 HermitCore | Stefan Lankes et al. | RWTH Aachen University $5^{\rm th}$ April 2017

Operating System = Overhead

• Every administration layer has its overhead \Rightarrow e.g. Hourglass benchmark

4 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5th April 2017

Operating System = Overhead

• Every administration layer has its overhead \Rightarrow e.g. Hourglass benchmark

How does the HPC / Cloud Community reduce overhead?

4 HermitCore | Stefan Lankes et al. | RWTH Aachen University 5th April 2017

Light-weight Kernels

- Typically taken of an existing fat kernel (e.g. Linux)
- Removalof unneeded features to improve the scalability
- e.g. ZeptoOS

Multi-Kernels

- A specialized kernel runs side-by-side to full-weight kernel (e.g. Linux)
- Applications of the full-weight kernels are able to run on the specialized kernel.
- The specialized kernel catch every system call and delegate them to the full-weight kernel
 - Binary compatible to the full-weight kernel
- Examples: mOS, McKernel

OS Designs for Cloud Computing – Usage of Common OS

- Two operating systems to maintain a single computer?
- Double Management!
- Why does a Cloud base on a Multi-User-/Multi-Tasking OS?

- Now, every system call is a function call \Rightarrow Low overhead
- Whole optimization of an image possible (including the library OS)
 - Link Time Optimization (LTO)
- Removing unneeded code \Rightarrow reduces the attack vector

- Rump kernels¹
 - \blacksquare Part of NetBSD \Rightarrow e.g., NetBSD's TCP / IP stack is available as library
 - Strong dependencies to the hypervisor
 - Not directly bootable on a standard hypervisor (e.g., KVM)
- IncludeOS²
 - **\equiv** Runs natively on the hardware \Rightarrow minimal Overhead
 - \blacksquare Only 32 bit support to avoid the overhead of paging \Rightarrow uncommon in HPC
- MirageOS³
 - \blacksquare Designed for the high-level language OCaml \Rightarrow uncommon in HPC
- ¹A. Kantee and J. Cormack. "Rump Kernels No OS? No Problem!". In: <u>; login:</u> 2014.
- ²A. Bratterud et al. "IncludeOS: A Resource Efficient Unikernel for Cloud Services". In:
- 7th Int. Conference on Cloud Computing Technology and Science. 2015.
 - ³A. Madhavapeddy et al. "Unikernels: Library Operating Systems for the Cloud". In:
- 8th Int. Conference on Architectural Support for Programming Languages and Operating Systems. 2013.

8 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5th April 2017

Combination of the Unikernel and Multi-Kernel to reduce the overhead

- The same binary is able to run
 - = in a VM (classical unikernel setup)
 - = or bare-metal side-by-side to Linux (multi-kernel setup)
- Support for dominant programming models (MPI, OpenMP)
- Single-address space operating system
 - No TLB Shootdown

9 HermitCore | Stefan Lankes et al. | RWTH Aachen University 5th April 2017

Classical Unikernel Setup

Applications are able to boot directly within a VM

- Tested with Qemu / KVM
- Tested with uhyve (experimental KVM-based Hypervisor)
 - = Qemu emulates more than HermitCore needs \Rightarrow large setup time
 - = uhyve reduce the boot time (from $2 \text{ s to } \sim 30 \text{ ms}$)
- Amazon Web Services (available soon!)

Multi-Kernel Setup

- One kernel per NUMA node
 - Only local memory accesses (UMA)
 - Message passing between NUMA nodes
- One FWK (Linux) in the system to get access to a broader driver support
 - Only a backup for pre- / post-processing
 - Critical path should be handled by HermitCore

 On the detection of a HermitCore app, a proxy will be started.

Booting HermitCore

- On the detection of a HermitCore app, a proxy will be started.
- The proxy unplugs a set of cores.

- On the detection of a HermitCore app, a proxy will be started.
- The proxy unplugs a set of cores.
- Triggers Linux to boot HermitCore on the unused cores.

- On the detection of a HermitCore app, a proxy will be started.
- The proxy unplugs a set of cores.
- Triggers Linux to boot HermitCore on the unused cores.
- A reliable connection will be established.

Booting HermitCore

 On the detection of a HermitCore app, a proxy will be started.

- The proxy unplugs a set of cores.
- Triggers Linux to boot HermitCore on the unused cores.
- A reliable connection will be established.
- By termination, the cores are set to the HALT state.

- On the detection of a HermitCore app, a proxy will be started.
- The proxy unplugs a set of cores.
- Triggers Linux to boot HermitCore on the unused cores.
- A reliable connection will be established.
- By termination, the cores are set to the <u>HALT</u> state.
- Finally, reregistering of the cores to Linux.

Runtime Support

- SSE, AVX2, AVX512, FMA,...
- Full C-library support (newlib)
- HBM support similar to memkind
- IP interface & BSD sockets (LwIP)
 - IP packets are forwarded to Linux
 - Shared memory interface

- Pthreads
 - Thread binding at start time
 - ${\scriptstyle \blacksquare} \ \, {\sf No} \ \, {\sf load} \ \, {\sf balancing} \Rightarrow {\sf less} \ \, {\sf housekeeping}$
- OpenMP via Intel's Runtime
- iRCCE- & MPI (via SCC-MPICH)
- Full support for the Go runtime

Test systems

- Intel Haswell CPUs (E5-2650 v3) clocked at 2.3 GHz
- Intel KNL (Phi 7210) clocked at 1.3 GHz, SNC mode with four NUMA nodes
- Results in CPU cycles

System activity	KNL		Haswell	
	HermitCore	Linux	HermitCore	Linux
getpid()	15	486	14	143
<pre>sched_yield()</pre>	197	983	97	370
malloc()	3051	12806	3715	6575
first write access to a page	2 078	3967	2018	4007

Overhead of VMs – Determined via NAS Parallel Benchmarks (Class B)

- It works! \Rightarrow https://youtu.be/gDYCJ1D0TKw
- Binary packages are available
- Reduce the OS noise significantly
- Try it out!

http://www.hermitcore.org

Thank you for your kind attention!

Backup slides

Outlook

- A fast direct access to the interconnect is required
- SR-IOV simplifies the coordination between Linux & HermitCore

18 HermitCore | Stefan Lankes et al. | RWTH Aachen University $5^{\rm th}$ April 2017

- Building of virtual borders (namespaces)
- Containers and their processes doesn't see each other
- Fast access to OS services
- Less secure because an exploit for the container attacks also the host OS
- Doesn't reduce the OS noise of the host system

EPCC OpenMP Micro-Benchmarks

Throughput Results of the Inter-kernel Communication Layer

Non-Uniform Memory Access

- Costs for memory access may vary
- Run processes where memory is allocated
- Allocate memory where the process resides
- Implications for the performance
 - Where should the applications store the data?
 - Who should decide the location?
 - = The operating system?
 - = The application developers?

22 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5th April 2017

Non-Uniform Memory Access

- Costs for memory access may vary
- Run processes where memory is allocated
- Allocate memory where the process resides
- Implications for the performance
 - Where should the applications store the data?
 - \equiv Who should decide the location?
 - = The operating system?
 - = The application developers?

Tuning Tricks

- Parallelization via Shared Memory (OpenMP)
 - Many side-effects and error-prone
 - Incremental parallelization
- Parallelization via Message Passing (MPI)
 - Restructuring of the sequential code
 - Less side-effects
- Performance Tuning
 - Bind MPI applications on one NUMA node
 - \Rightarrow No remote memory access

23 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5^{th} April 2017

GCC includes a OpenMP Runtime (libgomp)

- Reuse synchronization primitives of the Pthread library
- Other OpenMP runtimes scales better
- In addition, our Pthread library was originally not designed for HPC
- Integration of Intel's OpenMP Runtime
 - Include its own synchronization primitives
 - Binary compatible to GCC's OpenMP Runtime
 - Changes for the HermitCore support are small
 - = Mostly deactivation of function to define the thread affinity
 - Transparent usage
 - = For the end-user, no changes in the build process

Support of compilers beside GCC

```
■ Just avoid the standard environment (-ffreestanding)
Set include path to HermitCore's toolchain
Be sure that the ELE file use HermitCore's ABL
    ■ Patching object files via elfedit
Use the GCC to link the binary
  LD = x86_{64} - hermit - gcc
  \#CC = x86_{64} - hermit - gcc
  #CFLAGS = -03 -mtune=native -march=native -fopenmp -mno-red-zone
  CC = icc - D_hermit_{-}
  CFLAGS = -03 -xHost -mno-red-zone -ffreestanding -I$(HERMIT_DIR) -openmp
  ELFEDIT = x86 \ 64 - hermit - elfedit
  stream.o: stream.c
          $(CC) $(CFLAGS) -c -o $@ $<
          $(ELFEDIT) --output-osabi HermitCore $@
  stream: stream.o
          (LD) - 0
```


Changes to the common software stack determined with cloc

Software Stack	LoC	Changes
binutils	5 121 217	226
gcc	6 850 382	4 821
Linux	15276013	1 296
Newlib	1 040 826	5 472
LwIP	38 883	832
Pthread	13768	466
OpenMP RT	61 594	324
HermitCore	-	10597

Hydro (preliminary results)

28 HermitCore | Stefan Lankes et al. | RWTH Aachen University | 5th April 2017 Thank you for your kind attention!

Stefan Lankes et al. - slankes@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems E.ON Energy Research Center, RWTH Aachen University Mathieustraße 10 52074 Aachen

www.acs.eonerc.rwth-aachen.de

