
HermitCore:
A Library Operating System for Cloud and HPC

Jens Breitbart0, Stefan Lankes1, Simon Pickartz1

0Bosch Chassis Systems Control, Stuttgart, Germany
1RWTH Aachen University, Aachen, Germany

Agenda

Motivation

Challenges for the Future Systems

OS Architectures

HermitCore Design

Performance Evaluation

Conclusion and Outlook

2 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Motivation

Complexity of high-end HPC systems keeps growing
Extreme degree of parallelism
Heterogeneous core architectures
Deep memory hierarchy
Power constrains

⇒ Need for scalable, reliable performance and capability to rapidly adapt to new HW
Applications have also become complex

In-situ analysis, workflows
Sophisticated monitoring and tools support, etc. . .
Isolated, consistent simulation performance

⇒ Dependence on POSIX, MPI and OpenMP

Seemingly contradictory requirements. . .

3 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Operating System = Overhead

Every administration layer has its overhead ⇒ e. g. Hourglass benchmark

10000 20000 30000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s

OS noise reduce the scalability / increases latency

4 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

How does the HPC community reduce the overhead?

Light-weight Kernels

Typically taken of an existing fat kernel (e. g. Linux)
Removal of unneeded features to improve the scalability
e. g. ZeptoOS

Multi-Kernels
A specialized kernel runs side-by-side to full-weight kernel (e. g. Linux)
Applications of the full-weight kernels are able to run on the specialized kernel.
The specialized kernel catch every system call and delegate them to the full-weight
kernel

Binary compatible to the full-weight kernel
Examples: mOS, McKernel

5 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

OS Designs for Cloud Computing – Usage of Common OS

Operating System eth0

Hypervisor Software Virtual Switch

eth0OS

Application

eth0OS

Application

Two operating systems to maintain a single computer? Double Management!
Why should one run a Multi-User-/Multi-Tasking OS within a hypervisor in the Cloud
for a simple webserver?

6 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

OS Designs for Cloud Computing – LibraryOS

Operating System eth0

Hypervisor Software Virtual Switch

eth0libOS

Application

eth0libOS

Application

Now, every system call is a function call ⇒ Low overhead
Whole optimization of an image possible (including the library OS)

Link Time Optimization (LTO)
Removing unneeded code ⇒ reduces the attack vector

7 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

HermitCore Design

Combination of the Unikernel and Multi-Kernel to reduce the overhead
The same binary is able to run

in a VM (classical unikernel setup)
or bare-metal side-by-side to Linux (multi-kernel setup)

Support for dominant programming models (MPI, OpenMP)
Single-address space operating system

No TLB Shootdown

8 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

HermitCore Design

Classical Unikernel Setup
Applications are able to boot directly within a VM

Tested with Qemu / KVM
Tested with uhyve (experimental KVM-based Hypervisor)

Qemu emulates more than HermitCore needs ⇒ large setup time
uhyve reduce the boot time (from 2 s to ~30 ms)

Google Compute Engine

Multi-Kernel Setup
One kernel per NUMA node

Only local memory accesses (UMA)
Message passing between NUMA nodes

One FWK (Linux) in the system to get access to a broader driver support
Only a backup for pre- / post-processing
Critical path should be handled by HermitCore

9 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Runtime Support

SSE, AVX2, AVX512, FMA,. . .
Full C-library support (newlib)
HBM support similar to memkind
IP interface & BSD sockets (LwIP)

IP packets are forwarded to Linux
Shared memory interface

Pthreads
Thread binding at start time
No load balancing ⇒ less housekeeping

OpenMP via Intel’s Runtime
iRCCE- & MPI (via SCC-MPICH)
Full support for the Go runtime

R

1
0

R

3
2

R

5
4

R

7
6

R

9
8

R

11
10

R

13
12

R

15
14

R

17
16

R

19
18

R

21
20

R

23
22

R

25
24

R

27
26

R

29
28

R

31
30

R

33
32

R

35
34

R

37
36

R

39
38

R

41
40

R

43
42

R

45
44

R

47
46

MC 1

MC 0

MC 3

MC 2

FPGA

Router

Tile
MIU MPB

Core 23

Core 22

L2$

L2$

10 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Is the software stack difficult to maintain?

Changes to the common software stack determined with cloc

Software Stack LoC Changes

binutils 5 121 217 226
gcc 6 850 382 4 821
Linux 15 276 013 1 296
Newlib 1 040 826 5 472
LwIP 38 883 832
Pthread 13 768 466
OpenMP RT 61 594 324
HermitCore – 10 597

11 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Operating System Micro-Benchmarks

Test systems
Intel Haswell CPUs (E5-2650 v3) clocked at 2.3 GHz
Intel KNL (Phi 7210) clocked at 1.3 GHz, SNC mode with four NUMA nodes

Results in CPU cycles

System activity KNL Haswell

HermitCore Linux HermitCore Linux

getpid() 15 486 14 143
sched_yield() 197 983 97 370
malloc() 3 051 12 806 3715 6575
first write access to a page 2 078 3 967 2018 4007

12 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1
·105

Time in s

Ga
p

in
Ti

ck
s

Standard Linux

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1
·105

Time in s

Ga
p

in
Ti

ck
s

HermitCore

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1
·105

Time in s

Ga
p

in
Ti

ck
s

Linux with enabled isolcpus & nohz

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1
·105

Time in s
Ga

p
in

Ti
ck

s

HermitCore without IP thread

Overhead of VMs – Determined via NAS Parallel Benchmarks (Class B)

Native (Linux) HermitCore + uhyve

CG BT SP EP IS
0

5

10

15

20

Sp
ee

d
in

GM
op

/s

14 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Outlook

Arm v8 support
SR-IOV simplifies the coordination between Linux & HermitCore

Core Core

Memory N
IC

Linux

Node 0

Core Core

Memory vN
IC

HermitCore

Node 1

Core Core

Memory vN
IC

HermitCore

Node 2

Core Core

Memory vN
IC

HermitCore

Node 3

Vi
rt

ua
lI

P
D

ev
ice

/
M

es
sa

ge
Pa

ss
in

g
In

te
ra

fc
e

15 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Conclusions

It works! ⇒ https://youtu.be/gDYCJ1DOTKw

Binary packages are available
Reduce the OS noise significantly
Try it out!

http://www.hermitcore.org

Thank you for your kind attention!

16 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

https://youtu.be/gDYCJ1DOTKw
http://www.hermitcore.org

Backup slides

OS Designs for Cloud Computing – Container

OS
eth0

Container

Application

Container

Application

Building of virtual borders (namespaces)
Containers and their processes doesn’t see each other
Fast access to OS services
Less secure because an exploit for the container attacks also the host OS
Doesn’t reduce the OS noise of the host system

18 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

EPCC OpenMP Micro-Benchmarks

2 4 6 8 100

1

2

3

Number of Threads

O
ve

rh
ea

d
in

µs

Parallel on Linux (gcc)
Parallel For on Linux (gcc)
Parallel on Linux (icc)
Parallel For on Linux (icc)
Parallel on HermitCore
Parallel For on HermitCore

19 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Throughput Results of the Inter-kernel Communication Layer

256 4 Ki 64 Ki 1 Mi0

1

2

3

4

5

Size in Byte

Th
ro

ug
hp

ut
in

Gi
B/

s

PingPong via iRCCE
PingPong via SCC-MPICH
PingPong via ParaStation MPI

20 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Lack of programmability

Non-Uniform Memory Access

Costs for memory access may vary
Run processes where memory is
allocated
Allocate memory where the process
resides
Implications for the performance

Where should the applications
store the data?
Who should decide the location?

The operating system?
The application developers?

Socket 0 Socket 1

Memory 0 Memory 1

Interconnect

Memory 2 Memory 3

21 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Lack of programmability

Non-Uniform Memory Access

Costs for memory access may vary
Run processes where memory is
allocated
Allocate memory where the process
resides
Implications for the performance

Where should the applications
store the data?
Who should decide the location?

The operating system?
The application developers?

Memory 0 Memory 1

Interconnect

Memory 2 Memory 3

21 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Tuning Tricks

Parallelization via Shared Memory
(OpenMP)

Many side-effects and error-prone
Incremental parallelization

Parallelization via Message Passing
(MPI)

Restructuring of the sequential code
Less side-effects

Performance Tuning
Bind MPI applications on one NUMA
node

⇒ No remote memory access
2x8 4x4 8x2 16x10

1

2

3

4

5

< threadcount > × < proccount >

Sp
ee

d
in

GF
lo

p/
s

LU-MZ.C.16
BT-MZ.C.16
SP-MZ.C.16

22 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

OpenMP Runtime

GCC includes a OpenMP Runtime (libgomp)
Reuse synchronization primitives of the Pthread library
Other OpenMP runtimes scales better
In addition, our Pthread library was originally not designed for HPC

Integration of Intel’s OpenMP Runtime
Include its own synchronization primitives
Binary compatible to GCC’s OpenMP Runtime
Changes for the HermitCore support are small

Mostly deactivation of function to define the thread affinity
Transparent usage

For the end-user, no changes in the build process

23 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Support of compilers beside GCC

Just avoid the standard environment (−ffreestanding)
Set include path to HermitCore’s toolchain
Be sure that the ELF file use HermitCore’s ABI

Patching object files via elfedit
Use the GCC to link the binary
LD = x86_64 -hermit -gcc
#CC = x86_64 -hermit -gcc
CFLAGS = -O3 -mtune= native -march= native -fopenmp -mno -red -zone
CC = icc -D__hermit__
CFLAGS = -O3 -xHost -mno -red -zone -ffreestanding -I$(HERMIT_DIR) -openmp
ELFEDIT = x86_64 -hermit - elfedit

stream .o: stream .c
$(CC) $(CFLAGS) -c -o $@ $<
$(ELFEDIT) --output -osabi HermitCore $@

stream : stream .o
$(LD) -o $@ $< $(LDFLAGS) $(CFLAGS)

24 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux (isolcpu)

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Hermit w LwIP

100002000030000

100

102

104

106

Loop time (cycles)
N

um
be

ro
fe

ve
nt

s Hermit wo LwIP

Hydro (preliminary results)

5 10 15 20

5,000

10,000

Number of Cores

M
FL

O
PS

Linux (1 process × n threads)
Linux (1 proc. × n thr., bind-to 0–19)
Linux (n proc. × 5 thr., bind-to numa)
HermitCore (n proc. × 5 thr.)

26 HermitCore | Jens Breitbart et al. | personal open source project |
22nd June 2017

Thank you for your kind attention!

Jens Breitbart et al. – jens.breitbart@de.bosch.com

www.jensbreitbart.de

HermitCore logo is provided by EmojiOne.

mailto:jens.breitbart@de.bosch.com
www.jensbreitbart.de

	Title page
	Motivation
	Challenges for the Future Systems
	OS Architectures
	HermitCore Design
	Performance Evaluation
	Conclusion and Outlook

