
HermitCore – A Unikernel for Extreme Scale Computing
Stefan Lankes1, Simon Pickartz1, Jens Breitbart2

1RWTH Aachen University, Germany
2Technische Universität München, Germany

Agenda

Motivation

OS Architectures

HermitCore Design

Performance Evaluation

Conclusion and Outlook

2 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Motivation

Yet Another Multi-Kernel Approach
Nearly the same motivation like Balazs Gerofi et al.1
Complexity of high-end HPC systems keeps growing

Extreme degree of parallelism
Heterogeneous core architectures
Deep memory hierarchy
Power constrains

⇒ Need for scalable, reliable performance and capability to rapidly adapt to new HW
Applications have also become complex

In-situ analysis, workflows
Sophisticated monitoring and tools support, etc. . .
Isolated, consistent simulation performance

⇒ Dependence on POSIX and the rich Linux APIs

and the rich Linux APIs, MPI and OpenMP

Seemingly contradictory requirements. . .
1B. Gerofi et al. “Exploring the Design Space of Combining Linux with Lightweight Kernels for Extreme

Scale Computing”. In: 5th Int. Workshop on Runtime and Operating Systems for Supercomputers. 2015.
3 HermitCore | Stefan Lankes et al. | RWTH Aachen University |

1st June 2016

Motivation

Yet Another Multi-Kernel Approach
Nearly the same motivation like Balazs Gerofi et al.1
Complexity of high-end HPC systems keeps growing

Extreme degree of parallelism
Heterogeneous core architectures
Deep memory hierarchy
Power constrains

⇒ Need for scalable, reliable performance and capability to rapidly adapt to new HW
Applications have also become complex

In-situ analysis, workflows
Sophisticated monitoring and tools support, etc. . .
Isolated, consistent simulation performance

⇒ Dependence on POSIX and the rich Linux APIs, MPI and OpenMP

Seemingly contradictory requirements. . .
1B. Gerofi et al. “Exploring the Design Space of Combining Linux with Lightweight Kernels for Extreme

Scale Computing”. In: 5th Int. Workshop on Runtime and Operating Systems for Supercomputers. 2015.
3 HermitCore | Stefan Lankes et al. | RWTH Aachen University |

1st June 2016

OS Architectures

Light-weight and / or Multi-Kernels for HPC

mOS, McKernel, Catamount, ZeptoOS, FusedOS, L4, FFMK, Hobbes, Kitten, CNK. . .
Detailed analyzes in the next talk2

Unikernels / LibraryOS
Basic ideas already developed in the Exokernel Era

Each process has it own hardware abstraction layer
Regained relevance in the area of cloud computing (e. g., IncludeOS, MirageOS)

With Qemu / KVM the abstraction layer is already defined
HermitCore is a combination of a multi-kernel and a unikernel

2B. Gerofi et al. “A Multi-Kernel Survey for High-Performance Computing”. In:
6th Int. Workshop on Runtime and Operating Systems for Supercomputers. 2016.
4 HermitCore | Stefan Lankes et al. | RWTH Aachen University |

1st June 2016

OS Designs for Cloud Computing – LibraryOS

Operating System eth0

Hypervisor Software Virtual Switch

eth0libOS

Application

eth0libOS

Application

Now, every system call is a function call ⇒ Low overhead

5 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

HermitCore – Basic ideas

Combination of the Unikernel and Multi-Kernel to reduce the overhead
Support of bare-metal execution
Unikernel ⇒ system calls are realized as function call

Single-address space operating system ⇒ No TLB Shootdown
System software should be designed for the hardware

Hierarchical approach (like the hardware)
One kernel per NUMA node

Only local memory accesses (UMA)
Message passing between NUMA nodes

Support of dominant programming models (MPI, OpenMP)
One FWK (Linux) in the system to get access to a broader driver support

Only a backup for pre- / post-processing
Critical path should be handled by HermitCore

Most system calls handled by HermitCore
E. g., memory allocation, access to the network interface

6 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.

The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.
By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.
The proxy unplugs a set of
cores.

Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.
By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.
The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.

A reliable connection will be
established.
By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.
The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.

By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.
The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.
By termination, the cores are
set to the HALT state.

Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Booting HermitCore

Hardware

Linux kernel

libc

Proxy

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP / MPI

App

By detection of a HermitCore
app, a proxy will be started.
The proxy unplugs a set of
cores.
Triggers Linux to boot
HermitCore on the unused
cores.
A reliable connection will be
established.
By termination, the cores are
set to the HALT state.
Finally, reregistering of the
cores to Linux.

7 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

HermitCore’s Toolchain (I)

Memory Layout

.bss (uninitialized data)

thread local storage / per core storage

.data / .text (application code + data)

.kdata / .ktext (kernel code + data)

.boot (initialize kernel)

libOS

Basic OS services (e. g., interrupt
handling) are separated in a library
Linked to a normal application like the C
library
A fix address for the init code is required

Defined in the linker script
Part of HermitCore’s cross toolchain

GCC 5.3.0 & Binutils
Support of C / C++ & Fortran

No changes to the common build
process

8 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

HermitCore’s Toolchain (II)

Memory Layout

.bss (uninitialized data)

thread local storage / per core storage

.data / .text (application code + data)

.kdata / .ktext (kernel code + data)

.boot (initialize kernel)

libOS

Transparant loading of HermitCore apps
Definition of a new ELF ABI

Only the magic number for the OS has
been changed in the ELF format
Minor modifications to GCC & binutils

By Linux support of miscellaneous binary
formats (binfmt), the loader checks the
magic number for the OS

1. Detection of the magic number
2. Starting the proxy
3. Proxy initiates via sysfs the boot

process of HermitCore apps
No changes to the common build process

9 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Runtime Support

SSE, AVX, FMA,. . .
Full C-library support (newlib)
IP interface & BSD sockets (LwIP)

IP packets are forwarded to Linux
Shared memory interface

Pthreads
Thread binding at start time
No load balancing ⇒ less housekeeping

OpenMP
iRCCE- & MPI (via SCC-MPICH)

R

1
0

R

3
2

R

5
4

R

7
6

R

9
8

R

11
10

R

13
12

R

15
14

R

17
16

R

19
18

R

21
20

R

23
22

R

25
24

R

27
26

R

29
28

R

31
30

R

33
32

R

35
34

R

37
36

R

39
38

R

41
40

R

43
42

R

45
44

R

47
46

MC 1

MC 0

MC 3

MC 2

FPGA

Router

Tile
MIU MPB

Core 23

Core 22

L2$

L2$

10 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

OpenMP Runtime

GCC includes a OpenMP Runtime (libgomp)
Reuse synchronization primitives of the Pthread library
Other OpenMP runtimes scales better
In addition, our Pthread library was originally not designed for HPC

Integration of Intel’s OpenMP Runtime
Include its own synchronization primitives
Binary compatible to GCC’s OpenMP Runtime
Changes for the HermitCore support are small

Mostly deactivation of function to define the thread affinity
Transparent usage

For the end-user, no changes in the build process

11 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Support of compilers beside GCC

Just avoid the standard environment (−ffreestanding)
Set include path to HermitCore’s toolchain
Be sure that the ELF file use HermitCore’s ABI

Patching object files via elfedit
Use the GCC to link the binary
LD = x86_64 -hermit -gcc
#CC = x86_64 -hermit -gcc
CFLAGS = -O3 -mtune= native -march= native -fopenmp -mno -red -zone
CC = icc -D__hermit__
CFLAGS = -O3 -xHost -mno -red -zone -ffreestanding -I$(HERMIT_DIR) -openmp
ELFEDIT = x86_64 -hermit - elfedit

stream .o: stream .c
$(CC) $(CFLAGS) -c -o $@ $<
$(ELFEDIT) --output -osabi HermitCore $@

stream : stream .o
$(LD) -o $@ $< $(LDFLAGS) $(CFLAGS)

12 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Operating System Micro-Benchmarks

Test system
Intel Haswell CPUs (E5-2650 v3) clocked at 2.3 GHz
64 GiB DDR4 RAM and 25 MB L3 cache
SpeedStep Technology and TurboMode are deactivated
4.2.5 Linux kernel on Fedora 23 (Workstation Edition)
gcc 5.3.x, AVX- & FMA-Support enabled (−mtune=native)

Results in CPU cycles

System activity HermitCore Linux

getpid() 14 143
sched_yield() 97 370
write() 3520 1079
malloc() 3772 6575
first write access to a page 2014 4007

13 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Hourglass Benchmark

Benchmarks reads permanently the time step counter
(Larger) Gaps ⇒ OS takes computation time (e. g., for housekeeping, devices drivers)
Results in CPU cycles

OS Gaps
Avg Max

Linux 69 31068
HermitCore (w/ LwIP) 68 12688
HermitCore (w/o LwIP) 68 376

14 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Hermit w LwIP

100002000030000

100

102

104

106

Loop time (cycles)
N

um
be

ro
fe

ve
nt

s Hermit wo LwIP

EPCC OpenMP Micro-Benchmarks

2 4 6 8 100

1

2

3

Number of Threads

O
ve

rh
ea

d
in

µs

Parallel on Linux (gcc)
Parallel For on Linux (gcc)
Parallel on Linux (icc)
Parallel For on Linux (icc)
Parallel on HermitCore
Parallel For on HermitCore

16 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Throughput Results of the Inter-kernel Communication Layer

256 4 Ki 64 Ki 1 Mi0

1

2

3

4

5

Size in Byte

Th
ro

ug
hp

ut
in

Gi
B/

s

PingPong via iRCCE
PingPong via SCC-MPICH
PingPong via ParaStation MPI

17 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Outlook

A fast direct access to the interconnect is required
SR-IOV simplifies the coordination between Linux & HermitCore

Core Core

Memory N
IC

Linux

Node 0

Core Core

Memory vN
IC

HermitCore

Node 1

Core Core

Memory vN
IC

HermitCore

Node 2

Core Core

Memory vN
IC

HermitCore

Node 3

Vi
rt

ua
lI

P
D

ev
ice

/
M

es
sa

ge
Pa

ss
in

g
In

te
ra

fc
e

18 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Conclusions

Prototype works
Nearly no OS noise
First performance results are promising
Suitable for Real-Time Computing?
Try it out!

http://www.hermitcore.org

Thank you for your kind attention!

19 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

http://www.hermitcore.org

Backup slides

Lack of programmability

Non-Uniform Memory Access

Costs for memory access may vary
Run processes where memory is
allocated
Allocate memory where the process
resides
Implications for the performance

Where should the applications
store the data?
Who should decide the location?

The operating system?
The application developers?

Socket 0 Socket 1

Memory 0 Memory 1

Interconnect

Memory 2 Memory 3

21 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Lack of programmability

Non-Uniform Memory Access

Costs for memory access may vary
Run processes where memory is
allocated
Allocate memory where the process
resides
Implications for the performance

Where should the applications
store the data?
Who should decide the location?

The operating system?
The application developers?

Memory 0 Memory 1

Interconnect

Memory 2 Memory 3

21 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Tuning Tricks

Parallelization via Shared Memory
(OpenMP)

Many side-effects and error-prone
Incremental parallelization

Parallelization via Message Passing
(MPI)

Restructuring of the sequential code
Less side-effects

Performance Tuning
Bind MPI applications on one NUMA
node

⇒ No remote memory access
2x8 4x4 8x2 16x10

1

2

3

4

5

< threadcount > × < proccount >

Sp
ee

d
in

GF
lo

p/
s

LU-MZ.C.16
BT-MZ.C.16
SP-MZ.C.16

22 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

OS Designs for Cloud Computing – Usage of Common OS

Operating System eth0

Hypervisor Software Virtual Switch

eth0OS

Application

eth0OS

Application

Two operating systems to maintain one computer?
Double Management!

23 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

OS Designs for Cloud Computing – Container

OS
eth0

Container

Application

Container

Application

Building of virtual borders (namespaces)
Containers and their processes doesn’t see each other
Fast access to OS services
Less secure because an exploit for the container attacks also the host OS

24 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Comparison to related Unikernels

Rump kernels3

Part of NetBSD ⇒ e. g., NetBSD’s TCP / IP stack is available as library
Strong dependencies to the hypervisor
Not directly bootable on a standard hypervisor (e. g., KVM)

IncludeOS4

Runs natively on the hardware ⇒ minimal Overhead
Neither 64 bit, nor SMP support

MirageOS5

Designed for the high-level language OCaml ⇒ uncommon in HPC

3A. Kantee and J. Cormack. “Rump Kernels – No OS? No Problem!” In: ; login: 2014.
4A. Bratterud et al. “IncludeOS: A Resource Efficient Unikernel for Cloud Services”. In:

7th Int. Conference on Cloud Computing Technology and Science. 2015.
5A. Madhavapeddy et al. “Unikernels: Library Operating Systems for the Cloud”. In:

8th Int. Conference on Architectural Support for Programming Languages and Operating Systems. 2013.
25 HermitCore | Stefan Lankes et al. | RWTH Aachen University |

1st June 2016

Is the software stack difficult to maintain?

Changes to the common software stack determined with cloc

Software Stack LoC Changes

binutils 5 121 217 226
gcc 6 850 382 4 821
Linux 15 276 013 1 296
Newlib 1 040 826 5 472
LwIP 38 883 832
Pthread 13 768 466
OpenMP RT 61 594 324
HermitCore – 10 597

26 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Hourglass Benchmark

Benchmarks reads permanently the time step counter
(Larger) Gaps ⇒ OS takes computation time (e. g., for housekeeping, devices drivers)
Results in CPU cycles

OS Gaps
Avg Max

Linux 69 31068
Linux (isolcpu) 69 51840
HermitCore (w/ LwIP) 68 12688
HermitCore (w/o LwIP) 68 376

27 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux (isolcpu)

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Hermit w LwIP

100002000030000

100

102

104

106

Loop time (cycles)
N

um
be

ro
fe

ve
nt

s Hermit wo LwIP

Hydro (preliminary results)

5 10 15 20

5,000

10,000

Number of Cores

M
FL

O
PS

Linux (1 process × n threads)
Linux (1 proc. × n thr., bind-to 0–19)
Linux (n proc. × 5 thr., bind-to numa)
HermitCore (n proc. × 5 thr.)

29 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Which kind of security do we need?

Unikernels ⇒ no system calls ⇒ unsecure?
In HPC, security could be realized by a cluster management tool
Could Intel’s MPX (Memory Protection Extensions) protect the kernel for uncontrolled
access?

Part of the Skylake architecture
MPX introduces new bounds registers to protect the system against buffer overflows
Kernel could be the lower bound of a buffer. . .

A (bare-metal) hypervisor solves the problem completely

30 HermitCore | Stefan Lankes et al. | RWTH Aachen University |
1st June 2016

Thank you for your kind attention!

Stefan Lankes et al. – slankes@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems
E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

www.acs.eonerc.rwth-aachen.de

mailto:slankes@eonerc.rwth-aachen.de
www.acs.eonerc.rwth-aachen.de

	Title page
	Motivation
	OS Architectures
	HermitCore Design
	Performance Evaluation
	Conclusion and Outlook

